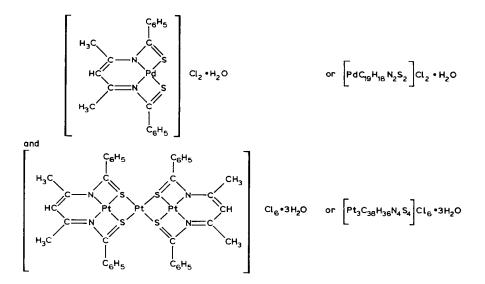
Thermal stability and non-isothermal kinetic study of the decomposition of two coordination compounds of palladium and platinum with ligands derived from thiobenzamide and acetylacetone

Mihaela Badea^a, Dana Marinescu^a and E. Segal^b

^a Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, Strada Dumbrava Rosie nr. 23, Bucharest (Romania) ^b Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bulevardul Republicii 13, Bucharest (Romania)


(Received 22 January 1991)

Abstract

The results concerning the thermal behaviour of two coordination compounds synthesised by template condensation are presented. The values of the non-isothermal kinetic parameters have been determined for some of the decomposition steps.

INTRODUCTION

Following our research concerning the thermal decomposition of coordination compounds with ligands derived from thioamides [1], this work deals with the substances

EXPERIMENTAL

The coordination compounds were synthesised according to a method described elsewhere [2].

The heating curves were recorded on an MOM (Budapest) derivatograph, type Paulik–Paulik–Erdey in a static air atmosphere between ambient temperature and 1000 °C, using various heating rates in the range 2.5–10 K min⁻¹.

X-ray diffractograms using chromium K_{α} radiation were obtained on a Philips P.W.1140 diffractometer. IR spectra were recorded on a SPECORD IR 71, Zeiss Jena spectrophotometer.

In order to evaluate the non-isothermal kinetic parameters, three methods were applied: the Coats-Redfern [3] and the Flynn-Wall [4] for constant heating rate, and the Coats-Redfern method as modified by Urbanovici and Segal [5]. The experimental data were processed automatically using a program written in BASIC language by Dragoe and Segal [6].

The mean sizes of the crystallites were evaluated using Scherrer's formula [7].

RESULTS AND DISCUSSION

The values of the interplanar distances, of the relative intensities and of the mean crystallite sizes for the most intense lines on the diffractograms of compounds 1 and 2 are given in Table 1.

TABLE	1
-------	---

Primary crystallographic data and mean crystallite size for compounds 1 and 2

Compound	Relative	d	С
-	intensity	(Å)	(Å)
$\overline{1. [PdC_{19}H_{18}N_2S_2]Cl_2 \cdot H_2O}$	100	2.831	459
	71	2.998	
	86	2.483	
	57	2.218	
	57	1.907	
	50	1.749	
	57	1.669	
2. [Pt ₃ C ₃₈ H ₃₆ N ₄ S ₄]Cl ₆ ·3H ₂ O	86	5.731	445
	86	5.407	
	50	4.415	
	79	3.864	
	100	3.799	
	64	3.545	
	57	2.809	
	71	2.606	

The decomposition of $[PdC_{19}H_{18}N_2S_2]Cl_2 \cdot H_2O$

According to the TG curves, the following decomposition steps for this compound are

$$[PdC_{19}H_{18}N_{2}S_{2}]Cl_{2} \cdot H_{2}O(s) \xrightarrow{83^{\circ}C} [PdC_{19}H_{18}N_{2}S_{2}]Cl_{2}(s) + H_{2}O(g)$$
(1)

$$[PdC_{19}H_{18}N_{2}S_{2}]Cl_{2}(s) + 5O_{2}(g) \xrightarrow{240^{\circ}C} [PdC_{2}H_{6}N_{2}S_{2}]Cl_{2}(s)$$

$$\frac{dC_{19}H_{18}N_2S_2[Cl_2(s) + 5O_2(g)]}{+ 2C_6H_6(g) + 5CO_2(g)} \rightarrow [PdC_2H_6N_2S_2]Cl_2(s) + 2C_6H_6(g) + 5CO_2(g)$$
(2)

$$[PdC_{2}H_{6}N_{2}S_{2}]Cl_{2}(s) + 5.5O_{2}(g) \xrightarrow{390^{\circ}C} PdS_{2}(s) + 2CO_{2}(g) + 2NO_{2}(g) + Cl_{2}(g) + 3H_{2}O(g)$$
(3)

$$PdS_{2}(s) + O_{2}(g) \xrightarrow{435^{\circ}C} PdS(s) + SO_{2}(g)$$
(4)

$$PdS(s) + O_2(g) \xrightarrow{830 \circ C} Pd(s) + SO_2(g)$$
(5)

The temperatures written above the arrows correspond to the maximum decomposition rate as shown by the DTG curves.

The existence of $[PdC_2H_6N_2S_2]Cl_2$ as a product of reaction (2) has been confirmed by the IR spectrum which exhibits a band located between 600 and 800 cm⁻¹ assigned to the frequency ν (C–S), and a broad band in the range 3350–3500 cm⁻¹ corresponding to ν_s (N–H) and ν_{as} (N–H). A similar compound was obtained by the decomposition of the coordination compound between Co(II) and a ligand, formed by template condensation of thiobenzamide and ethylendiamine [1].

The presence of PdS_2 , PdS and Pd, as products of reactions (3), (4) and (5), were confirmed by X-ray diffractograms.

The values of the non-isothermal kinetic parameters, reaction order, n, activation energy, E, and pre-exponential factor, A, for reactions (1) and (2) are listed in Tables 2 and 3.

TA	BL	Æ	2
----	----	---	---

Values of the non-isothermal kinetic parameters of reaction (1) at $\beta = 2.8$ K min⁻¹

Method	n	E (cal mol ⁻¹)	$A(s^{-1})$
Coats-Redfern	2.8	2.24×10 ⁴	2.99×10^{12}
Flynn–Wall	2.7	2.20×10^{4}	1.16×10^{12}
Modified Coats-Redfern	2.6	2.20×10^{4}	8.78×10 ¹¹

TABLE 3

Values of the non-isothermal kinetic parameters of reaction (2) at $\beta = 2.8$ K min⁻¹

Method	n	$E (\text{cal mol}^{-1})$	$A(s^{-1})$
Coats-Redfern	1.7	2.34×10^{4}	1.12×10 ⁸
Flynn–Wall	1.7	2.40×10^4	2.68×10^{8}
Modified Coats-Redfern	1.6	2.30×10^{4}	6.45×10^{7}

The relatively low values of the heating rates provide conditions close to isothermal ones, with no heat transfer limitations.

Inspection of the results in Tables 2 and 3 shows quite a good agreement among the values of the non-isothermal kinetic parameters obtained by the three methods applied.

The decomposition of $[Pt_3C_{38}H_{36}N_4S_4]Cl_6 \cdot 3H_2O$

The TG curves of this compound show the following decomposition steps

$$[Pt_{3}C_{38}H_{36}N_{4}S_{4}]Cl_{6} \cdot 3H_{2}O(s) \xrightarrow{243^{\circ}C} [Pt_{3}C_{32}H_{28}N_{4}S_{4}]Cl_{6}(s) + H_{2}O(g) + O_{2}(g) + 2C_{6}H_{6}(g)$$
(6)

$$[Pt_{3}C_{32}H_{28}N_{4}S_{4}]Cl_{6}(s) + 24.5O_{2}(g) \xrightarrow{330^{\circ}C} PtS \cdot 2NH_{3}(s) + PtS(s) + PtS_{2}(s) + 2C_{6}H_{6}(g) + 20CO_{2}(g) + 2NO_{2}(g) + 5H_{2}O(g) + 3Cl_{2}(g)$$
(7)

$$PtS \cdot 2NH_{3}(s) + PtS(s) + PtS_{2}(s) + O_{2}(g) \xrightarrow{365^{\circ}C} 3PtS(s) + SO_{2}(g) + 2NH_{3}(g)$$

$$(8)$$

$$PtS(s) + O_2(g) \xrightarrow{385^{\circ}C} Pt(s) + SO_2(g)$$
(9)

The intermediates as well as the final product of the decompositions have been isolated and analysed by vibrational spectroscopy, X-ray diffractometry and chemical analysis.

The values of the non-isothermal kinetic parameters of reactions (6) and (7) are listed in Tables 4 and 5. A satisfactory agreement among the values

TABLE 4

Values of the non-isothermal kinetic parameters of reaction (6) at $\beta = 2.63$ K min⁻¹

Method	n	$E \ (cal \ mol^{-1})$	$A(s^{-1})$
Coats-Redfern	0	6.93×10 ³	0.38
Flynn–Wall	0	8.38×10^{4}	9.00
Modified Coats-Redfern	0	8.02×10^{3}	0.20

TABLE 5

Values of the non-isothermal kinetic parameters of reaction (7) at $\beta = 2.63$ K min⁻¹

Method	n	E (cal mol ⁻¹)	$A(s^{-1})$
Coats—Redfern	1.1	3.78×10^4	$3.81 \times 10^{11} \\ 5.20 \times 10^{11} \\ 4.54 \times 10^{11}$
Flynn–Wall	1.1	3.81×10^4	
Modified Coats–Redfern	1.0	3.80×10^4	

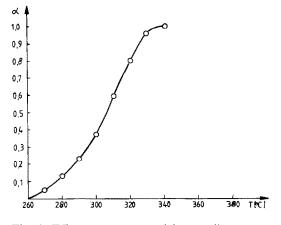


Fig. 1. TG curve regenerated in coordinates α and T (°C) for reaction (2) at $\beta = 2.8$ K min⁻¹: —, calculated curve; \circ , experimental points.

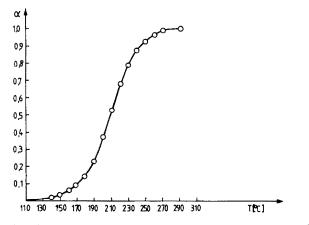


Fig. 2. TG curve regenerated in coordinates α and T (°C) for reaction (7) at $\beta = 2.63$ K min⁻¹: -----, calculated curve; \circ , experimental points.

of the non-isothermal kinetic parameters can also be observed for these cases.

As shown in Table 5, the values of the pre-exponential coefficient for n = 1 are close to those predicted by the theory of transition state [8].

The TG curves regenerated in coordinates α and T (°C) using the Coats-Redfern kinetic parameter values are given in Figs. 1 and 2. As can be seen, the experimental points lie practically on these curves.

CONCLUSIONS

The thermal decomposition steps for $[PdC_{19}H_{18}N_2S_2]Cl_2 \cdot H_2O$ and $[Pt_3C_{38}H_{36}N_4S_4]Cl_6 \cdot 3H_2O$ were derived. Where possible, the values of the non-isothermal kinetic parameters have been determined for the individual

decomposition steps. A satisfactory agreement was obtained among the values of the non-isothermal kinetic parameters obtained by the three methods applied.

REFERENCES

- 1 M. Badea, E. Segal and D. Marinescu, Thermochim. Acta, 149 (1989) 251.
- 2 D. Marinescu, L. Ivan, E. Cristurean and M. Badea, Bul. Inst. Politeh. Bucuresti, Ser. Chim., in press.
- 3 A.W. Coats and J.P. Redfern, Nature, 201 (1964) 68.
- 4 J.H. Flynn and L.A. Wall, Polym. Lett., 41 (1966) 323.
- 5 E. Urbanovici and E. Segal, Thermochim. Acta, 80 (1984) 379.
- 6 N. Dragoe and E. Segal, Thermochim. Acta, in press.
- 7 A. Guinier, Théorie et Technique de la Radiocristallographie, Dunod, Paris, 1964, p. 462.
- 8 I.G. Murgulescu, T. Oncescu and E. Segal, Introduction to Physical Chemistry, Vol. II (1), Publishing House of the Academy of Romania, Bucharest, 1981, in Romanian.